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A B S T R A C T

Emerging electric-vehicle technologies and the global transition to renewable energy have driven the production
of lithium batteries significantly in the past ten years. However, potential adverse impacts accompanying this
transition require closer scrutiny. The purpose of this research is to assess the environmental impact and its
possible correlation with lithium mining in the Atacama Salt Flat, the world’s largest lithium extraction site.
Using both Landsat imagery and MODIS land products, we investigate the mining areas to (1) determine area
and rate of change over time, (2) analyze spatiotemporal patterns of changes in key environmental parameters,
and (3) perform regression analysis between lithium mining activities and environmental degradation between
1997 and 2017. We use five environmental parameters for our analysis: Normalized Difference Vegetation Index
(NDVI), Daytime Land Surface Temperature (Day-LST), Soil Moisture Index (SMI), Nighttime Land Surface
Temperature (Night-LST), and Net Evapotranspiration (ET). Our analysis shows that lithium mining operations
have expanded rapidly by 7.07% annually. Our pixel-based time-series trend analysis for each image stack, using
the Mann-Kendall test and Sen’s slope coefficient, shows some significant degradation over the past 20 years
including (1) vegetation decline, (2) elevating daytime temperatures, (3) decreasing trend of soil moisture, and
(4) increasing drought condition in national reserve areas. However, no substantial degradation in nighttime-LST
and ET is observed in the study area. Our analyses of the relationship between mining activities and environ-
mental degradation also indicate that the continuous expansion of lithium mining has strong negative corre-
lations with the NDVI and SMI, and a strong positive correlation with LST. We identified lithium mining ac-
tivities as one of the major stressors to the local environmental degradation. The results provide a baseline to
evaluate future socio-environmental impacts of lithium mining in the region. We anticipate our analysis will help
inform mining and environmental regulators, lithium industry decision-makers, and national park managers to
provide better management of the world’s largest lithium production sites for a sustainable future.

1. Introduction

The world is increasingly shifting towards sustainable-energy based
transportation systems, in which more sustainable forms of energy
production as well as consumption are timely and strongly needed.
However, potential environmental impacts alongside the transition re-
quire a closer scrutiny (Agusdinata et al., 2018). Such an energy
transformation and supporting infrastructure rely on among others li-
thium-ion batteries as efficient high-density energy storage (Jaskula,
2017). In response to increased lithium demand for battery applica-
tions, global lithium production has risen by 12% in 2016 (IFC
(International Finance Corporation), 2017) and is projected to keep
growing rapidly in the near future (Deetman et al., 2018).

Most of the world’s lithium production takes place in South America

where 70% of global reserves are concentrated (Jaskula, 2018). Chile,
as a leading producer, takes up an average of 38% of worldwide lithium
production in the past twenty years (Fig. 1). The lithium mining in-
dustry in Chile started in the late 1970s and experienced dramatic and
continuous expansion in production since 1997, from 4500 ton/yr to
14,100 ton/yr in 2017 (Jaskula, 2018; Joyce, 1998). The lithium ex-
traction sites are located in the Atacama Salt Flat (ASF), Northern Chile,
where the extremely arid climate and unique topography produce the
saline groundwater containing 0.15% lithium that serves as the major
water source for lithium extraction (Salas et al., 2010; Tran and Luong,
2015). Generally, the saline groundwater (brine) containing lithium is
pumped through a cascade of ponds where impurities or by-products
such as halite, sylvanite, and carnallite are precipitated by solar eva-
poration, wind, and chemical additives to a concentration of
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approximately 6000 ppm (Tran and Luong, 2015; Flexer et al., 2018).
After that, the concentrated brine is transported back to the recovery
plant in Antofagasta for future purification and processing. A general
schematic representation for the lithium extraction process in the ASF is
shown in Fig. 2.

Water usage and the potential threats to local flora and fauna are
two major sustainability concerns driven by lithium extraction (Flexer
et al., 2018). In the lithium extraction process, 95% of extracted brine
water is evaporated (Habashi, 1997) and freshwater is pumped directly
from mountains on the eastern border of the ASF. Even though the brine
water is not suitable for human or agricultural consumption, it is in
hydrodynamic relation with the surroundings (Marazuela et al., 2019a).
As a result, the water-intensive mining process in this very arid region
can cause adverse effects on aquifer depletion (Babidge and Bolados,
2018), hydric balance and ecosystems (Flexer et al., 2018; Babidge and
Bolados, 2018), which raise concerns by local populations, en-
vironmentalists, and governmental authority. In the recent decade, a
large number of mining permits had been issued by the regional au-
thority to meet the globally increasing demand for lithium carbonate,
such that the expanded production scale may cause changes in land-
scape and microclimate of the surrounding environment, resulting in
social conflicts between mining firms and local communities (Molina
Camacho, 2016).

This study aims at examining spatiotemporal changes in the en-
vironment of the Atacama Salt Flat (ASF) and the surrounding areas by
answering the following two research questions: (1) Which parts in the
studied area have been experienced environmental degradation in the past
20 years (1997–2017), in terms of mining land use, vegetation cover, and
micro-climate? and (2) What is the relationship between the expanding

lithium industry and dynamic patterns of environmental degradation in this
area? Considering challenges in quantifying the spatiotemporal dy-
namics of the lithium mining production and environmental impacts in
this area, we propose remote sensing approach to analyze these dy-
namics, providing credible baseline information of the environmental
conditions for local communities, state decision-makers, park man-
agement officials and lithium mining industrial managers.

The issue of environmental degradation related to lithium mining
has not been largely addressed by existing literature due to the re-
moteness of the site and the shortage of reliable data. The qualitative
research has been conducted in this area to document the intense
conflicts between communities and mining companies over water and
land. Babidge (2016) studied the contested value of resources in this
area through interviews with community leaders, mining workers, and
indigenous people. The study analyzes how the commodification of
natural resources caused by the lithium mining industry is changing
water availability and other environmental factors, which in turn af-
fecting the livelihood of the traditional agro-pastoral economy of
communities. Babidge (2013) also investigated the contested moral
values embedded in the “partnership” between mining companies and
indigenous communities in neighboring communities through inter-
views, observations, and meetings. The study documented the negative
changes brought by the lithium mining in the ASF, such as limited
access to old pastoral territory, pollution, and rapid change to tradi-
tional culture and social practice. However, these changes as well as the
relationship between environmental changes and lithium production
have not been adequately quantified.

Furthermore, environmental justice issue has been attracting at-
tention on the disputes over limited resources in the Atacama Desert.

Fig. 1. Worldwide and Chile lithium production between 1997 and 2017. (Data source: USGS Mineral Commodity Summaries between 1998 and 2018 (Anon,
2019)).

Fig. 2. Schematic representation of lithium extraction process in the ASF. Current extraction technology concentrates the brine through chemical additives and
evaporation by wind and solar energy. Lithium-concentrated salt then transported to Antofagasta for further purification and production of lithium carbonate.
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Romero et al. (2012) explored the mining development and the en-
vironmental injustice in the Atacama Desert by assessing the water
balance in selected watersheds where mining operations are mostly
concentrated. GIS mapping was applied to explore the spatial re-
lationship of mining sites, conservation areas, indigenous lands, and
economic investments. However, the paper covered all mining types in
Northern Chile including copper, gold, and other minerals, therefore
may not reflect the unique characteristics of lithium mining. Moreover,
the discussion of these spatial relationships didn’t quantify the possible
causal relationship between mining development and environmental
parameters.

Existing literature centering on the quantification of environmental
impacts of lithium mining in South America is limited in terms of the
number of publications as well as the research methodology
(Agusdinata et al., 2018). Life cycle assessment is the most common
methodology applied in quantifying the overall environmental impacts
caused by lithium carbonate production. Stamp et al. (2012) assessed
the life-cycle environmental impacts lithium carbonate production in
the Atacama Desert by examining Cumulative Energy Demand (CED),
Global Warming Potential (GWP), and EI99, which is an average
weighting indicator combing different impact categories. However, the
study focused greatly on energy consumption and carbon emissions of
lithium mining and did not capture the spatiotemporal patterns of
impact on local water cycle and landscape, which are of great im-
portance considering the extreme local climate.

Current literature showcased that remote sensing approach had
been broadly applied to exploring landscape dynamics and ecosystem
service functions. Ishtiaque et al. (2016) examined the ecosystem dy-
namics of the mangrove forest through MODerate Resolution Imaging
Spectroradiometer (MODIS) product by comparing five ecological
parameters including Percentage Tree Cover (PTC), Enhanced Vegeta-
tion Index (EVI), Net Primary Productivity (NPP), Leaf Area Index
(LAI), and Evapotranspiration (ET). A pixel-based ordinary least square
(OLS) regression model was then developed for time-series trend ana-
lysis of detecting the spatiotemporal changes of ecosystem health.
Estoque et al. (2018) assessed the environmental impacts in Myanmar’s
mangrove forests caused by deforestation through Land Surface Tem-
perature (LST), ET, terrestrial NPP, and PTC using MODIS land pro-
ducts. The study also quantified temporal changes in the area of man-
grove deforestation through Landsat imagery. Wang et al. (2016)
studied the spatiotemporal pattern of the surface urban heat island
intensity in the Phoenix metropolitan area and the relationship with
land use land cover (LULC) using MODIS LST images and classified
LULC maps generated from Landsat imagery. A time-series trend ana-
lysis was also performed using the OLS regression model to examine the
statistical significance of temperature change on a pixel basis.

To examine spatiotemporal changes in the environment of the ASF
and surrounding areas, we will first introduce the unique topography,
landscape attributes, and biodiversity importance of our study area. We
then present the time-series trend analysis and findings. The last section
discusses possible correlations between the expanding lithium industry
and patterns of environmental degradation, and point out to other
possible environmental stressors affecting the environmental changes in
the study area.

2. Study area

The Atacama Salt Flat (ASF) (Fig. 3), located in the Region of An-
tofagasta, Northern Chile, is the third largest salt flat in the world
(around 3000 km2), providing crucial ecosystem services to local
communities and diverse flora and fauna species. Geographically, the
salt flat is an intramontane endorheic basin (i.e. an alluvium-filled valley
within mountainous ranges with a closed drainage system) bounded by
high mountains to each side (Fig. 3a). Unlike other salt flats, the to-
pography is of a high level of roughness and seldom covered by shallow
water due to the rapid evaporation process (Kampf et al., 2005). Four

sectors of the Los Flamencos National Reserve (Fig. 3)- Soncor (S.4),
Laguna de Aguas de Quelana (S.5), Valle de La Luna (S.6), Tambillo
(S.7) - located in our studied area were created in 1990 and is governed
by the Chile National Forest Corporation (CONAF). The S.4 and S.5 area
are formed by permanent lagoons which support diverse biodiversity
and serve as an important nesting center for flamingos. The S.6 and S.7
areas are mostly covered by barren soil and salt crests but they still
provide habitats to diverse species.

Rainfall in the ASF is limited and mostly concentrated in the sum-
mertime between January and March, with annual precipitation of
10 mm in the salt flat and 140 mm on high mountains (Salas et al.,
2010). Known as a high altitude region, elevation of this study area
decreases gradually from surrounding mountainous sectors towards the
center of the salt flat, from averagely 3300 to 2300 m above sea level
(Fig. 3a). The local climate is arid and mild, with the highest daytime
temperature of 24.3 °C in summer from December to February and the
average lowest temperature of 0.3 °C in winter from June to August.

The area included in this study covers the ASF and its surrounding
rural settlements in the north and east border of the ASF (Fig. 3a),
covering a total area of 8284 km2. Land cover land use types in the
study area are mostly barren soil, rural settlements clustered in north
and east margin, and mining ponds in the center of ASF. Sparsely
clustered vegetation oases can be found along the streams and lagoons
and near human settlements. Mining ponds can be clearly distinguished
from surroundings in the center of ASF by its bright cyan color. San
Pedro de Atacama located 55 km north of ASF is the largest town in this
commune (the third-level administrative division of Chile), and other
communities are sparsely distributed along the northeastern margin.

3. Materials and methods

3.1. Materials

This study used yearly Landsat imagery with time-series spanning
from 1997 to 2017. Specifically, two images of the best quality for each
year were selected, one from January to February and one from June to
July. We selected images acquired at approximately the same time in
both summertime and wintertime of the year to minimize the season-
ality variation and the spectral variation brought by phenological ef-
fects. The images with the striping noise in 2008 winter, 2011 winter,
2012 and 2013 summer were excluded. A total of 37 Landsat imagery at
a spatial resolution of 30 m were used to derive Normalized Difference
Vegetation Index (NDVI), Daytime Land Surface Temperature (Day-
LST), Soil Moisture Index (SMI), and mining areas. Details about ac-
quisition date and cloud cover can be found in the Supplementary
Information (SI-Table 1).

We also used MODerate Resolution Imaging Spectroradiometer
(MODIS) level-2 data product for environmental indicators that cannot
be directly derived from Landsat imagery. Specifically, this study used
the nighttime temperature layer of MODIS 8-Day LST product
(MOD11A2) from 2000 to 2017 and selected images with the same
acquisition date with the Landsat imagery. MODIS yearly ET product
(MOD16A3) from 2000 to 2014 was also used to map the dynamics of
water loss due to soil evaporation and plant transpiration (Mu et al.,
2007). Hence, a total of 36 images of Night-LST and 15 images of Net
ET both at a spatial resolution of 1 km were collected for this study.

3.2. Image processing

We examined most commonly used environmental indicators, NDVI,
LST in daytime and nighttime, SMI, and ET, and the area of mining pro-
duction to detect statistically significant trends of environmental de-
gradation. We followed the process of the pixel-based trend analysis
method widely applied in remote sensing studies (Ishtiaque et al., 2016;
Estoque et al., 2018; Wang et al., 2016; Fan et al., 2017). The detailed
workflow of image processing and analysis is shown in Fig. 4.
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We used NDVI as an indicator for mapping green biomass, con-
sidering its extensive uses in land cover identification (DeFries and
Townshend, 1994; Hansen et al., 2000), phenological studies (Lee et al.,
2002; Reed et al., 1994; Studer et al., 2007), and assessing ecological
responses to environmental change (Pettorelli et al., 2005). For our
study, the NDVI (Running, 1990; Myneni et al., 1995) is calculated for
each Landsat image as:

=
+

NDVI NIR RED
NIR RED (1)

where NIR and RED refer to the amounts of near-infrared and red
light, respectively, reflected by the vegetation and captured by the sa-
tellite. In total, 35 NDVI images were generated for the study period
from 1997–2017, with the valid pixel value ranging from -1 to 1.

Satellite-based data provided the only possibility of measuring LST
over wide areas with high temporal resolution (Li et al., 2013), pro-
viding more accurate assessments on urban heat island effect (Ngie
et al., 2014) and climate change studies in diverse spatial scales (Yang
et al., 2013). In this study, we use LST to map the spatiotemporal
changes of micro-climate and heating effects in the studied area. The

Fig. 3. Map of the study area in the ASF. The study area includes rural settlements surrounding ASF in the North and East border (red-dotted), mining companies in
the center of ASF (cyan color), and four sectors of the Los Flamencos National Reserve (S.4, S.5, S.6 and S.7) bounded in the green box.

Fig. 4. Research diagram depicting the workflow of image processing and analysis.
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LST is retrieved from Landsat imagery according to the method vali-
dated by (Avdan and Jovanovska (2016)), as (Artis and Carnahan,
1982):

=
+ ( )T BT

{1 [ ln ]}
S BT

(2)

where Ts is the LST in Celsius, BT is at-sensor brightness tempera-
ture in Celsius, is the wavelength of emitted radiance, is the land
surface emissivity, and is calculated by Boltzmann constant, Planck’s
constant and velocity of light. A total of 35 LST images was derived for
the study period from 1997 to 2017 with a spatial resolution of 30 m.

Soil moisture is another key aspect examined in this study for
monitoring the drought conditions in the area. We use the method
developed and validated by Zhan et al. (2007) to retrieve Soil Moisture
Index (SMI) from Landsat imagery, which is calculated as:

=
+

+SMI
M

R MR1 1
1

( )NIR RED2 (3)

where RNIR and RRED refer to the atmospherically corrected re-
flectance of NIR band and red band respectively, and M is the slope of
soil line which is extracted using the NIR and red band reflectance of
the study area (Zhan et al., 2007). In total, 35 SMI images were pro-
cessed with a valid range from 0 to 1 between 1997 and 2017 at a
spatial resolution of 30 m. Meanwhile, image layers of MODIS night-
time LST and Net ET were processed by multiplying with their scale
factors and converted to Celsius and kg/m2/year, respectively.

3.3. Image classification for mining and non-mining

Since little knowledge of extraction capacity in the study area is
known to the public, remote sensing data provide a perfect opportunity
of monitoring the expansion scale of lithium extraction. Hence, we
decide to classify the imagery for mining and non-mining area for the
period of 1997–2017. We only use the summertime Landsat imagery for
classification since lithium production is most distinguishable from the
background soil during summer months.

We performed an unsupervised classification for mining areas using
the Iterative Self-Organizing Data Analysis (ISODATA) algorithm. We
created 100 clusters using a maximum iteration of 10 and a con-
vergence threshold of 0.95. Clusters were identified as either mining or
non-mining through visual interpretation of the Landsat image dis-
played in different band combinations and with reference to Google
Earth imagery. Misclassification is inevitable in every single image
classification. Thus we also employed Google Earth imagery to assist in
identify misclassified areas and then manually corrected misclassified
areas using “Area Fill” tool in the ERDAS Imagine software.

To appropriately evaluate the classification appropriately, we con-
ducted an accuracy assessment for each classified image. For each
classified image, we created 200 stratified random validation points
with minimum points of 100 for each class. The producer’s accuracy,
user’s accuracy, overall accuracy, and Kappa coefficient for 20 classified
images were calculated from the error matrix and reported in
Supplementary Information (SI-Table 2). Since the cyan mining op-
eration area within the ASF can be easily distinguished from the
background barren soil, we achieved the overall accuracy exceeding
97% and the overall Kappa coefficient exceeding 0.95.

The resulted area of mining is used to calculate the area of expan-
sion for each year as the difference in the area of mining between two
consecutive years, and average expansion rate (Seto et al., 2011) as

×100 (( ) 1)MA
MA d

12017
1997

, where MA1997 and MA2017 are the area of
mining in 1997 and 2017 respectively, and d is the time span of the
study in years.

3.4. Time-series trend analysis

The image processing procedure generated five stacks of Landsat
and MODIS images for 1997–2017 and 2000–2017, respectively. That
is, NDVI, LST, and SMI from Landsat imagery; Nighttime LST and ET
from MODIS imagery. With these processed image stacks, we performed
a trend analysis on each pixel stack of these indicators to explore
whether an increasing or decreasing trend can be detected. The non-
parametric statistical test of Mann-Kendall (MK) test (Mann, 1945;
Kendall, 1948) is selected to achieve this purpose because it can per-
form robustly concerning the relatively small sample size, potential
non-normality issue, and nonlinear relationship with the year sequence.
More specifically, the time-series pixel values of each corresponding
pixel stack from each Landsat and MODIS product are extracted and
applied in the MK test. Pixel stacks with a calculated p-value 0.10
showing a detectable monotonic trend are retained for generating the
time-series trend map. We also apply Sen’s slope estimator (Sen, 1968)
to calculate the slope coefficient for pixel stacks showing a detectable
monotonic trend over time. Subsequently, the slope coefficient map
showing the rate of change is generated for each image stack for the
study period.

3.5. Correlation analysis

The other primary objective of this study is to explore possible
impacts of lithium mining expansions on the local environment.
Regression analysis has been widely used by remote sensing studies for
establishing relationships between various remotely sensed biophysical
variables (Wang et al., 2017; Chen et al., 2006; Carter, 1998; Schiebe
et al., 1992). To achieve this, we applied the ordinary least square
(OLS) regression method (Steel and Torrie, 1980) to measure the effect
of the mining expansion on each environmental variable. In the re-
gression model, the yearly value of areas for the mining operation is
explanatory variable, and the corresponding response variable is the
yearly mean value of each environmental variable for areas with a
detectable degradation trend. Regression models with a calculated p-
value 0.05 and an R2 > 0.5 are considered as indicating a strong
correlation.

In order to separate the effect of climate variability and mining on
the negative changes in NDVI, we excluded pixels having relatively
strong correlations between NDVI and SMI in the regression analysis,
considering SMI as an indicator of the impact of climate. Only pixels
with weak or no correlation between NDVI and SMI (absolute value of
Pearson’s correlation coefficient < 0.4 (Nishishiba et al., 2014)) are
retained for the regression analysis.

4. Results and analysis

4.1. Time-series changes of mining

The changes in the mining area in the ASF were determined through
image classification process using the Landsat imagery. From
1997–2017, lithium mining operations were estimated to expand from
20.54 km2 to 80.53 km2 (Fig. 5). Over the past twenty years, with an
average expansion rate of 7.07% per year, the mining industry in the
ASF has accumulatively expanded about 60 km2, four-fold of the pro-
duction scale in 1997. Spatially, mining operations started from the
original ponds developed in 1997 and gradually expanded through the
years (Fig. 6). A series of small separated ponds in central-left and
southwest corner might be experimental ponds for future expansion
purpose.

Our analysis also shows an overall trend of continuous increase in
the lithium mining area and a fluctuant pattern of the yearly expanded
area (Fig. 5). However, certain years showed relatively larger area in
expansion, such as 1999, 2009, and 2010, indicating two major ex-
panding activities in the past twenty years, one for SQM, a mining
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company, entering the lithium market and the other for recovering
from the economic crisis.

4.2. Time-series changes of environmental degradation

4.2.1. Vegetation cover
NDVI detects the response of vegetation varieties to the local en-

vironmental disturbance with a valid range from -1 to 1. The positive
value from 0 towards 1 corresponds to vegetation cover from sparse
shrub or grassland to dense canopy, and value towards -1 indicates the
absence of vegetation and the presence of water bodies. Hence, a ne-
gative change of NDVI in this study can imply the degradation from
dense tree cover to shrubland, from shrub or grassland to barren soil, or
from barren soil to mining operation ponds.

The negative changes of NDVI are evident within the ASF (Fig. 7a),
with NDVI values declined averagely from 0.0102 to -0.4077, re-
presenting a land cover change from barren soil to mining ponds over
the past 20 years. The decreasing trend of NDVI is also noticeable in the
northern human-settled areas where villages are distributed in clusters
(Figs. 7a, 10 a). In these areas, the NDVI values declined from at least
0.025 to a maximum of 0.7331 to an average value of 0.1612 over an
area of 3.4281 km2 during the past 20 years, indicating a degradation
trend towards shrubs or grasslands and an overall trend of sparser

vegetated areas.
As for the national reserve sectors, the decreasing trend of NDVI is

also detectable (Fig. 7a). NDVI values of sector S.6 and S.7 declined
from a maximum of 0.2925 and 0.3095 to approximately 0.0850 and
-0.0337, respectively, indicating the degradation of vegetated lands. In
sector S.4 and S.5, NDVI values declined approximately from a wide
range of −0.2617– 0.2047 to an average value of -0.0853. Such
changes, however, it cannot be solely classified as vegetation de-
gradation since these sectors are mainly composed of lagoons.

The negative changes of NDVI in the majority of areas in our study
site are not detectable. However, a decrease of NDVI values is still
detectable in areas of isolated rural settlements or important ecosystem
functions such as along streams and near wetlands. Our analysis shows
the annual negative changes in NDVI values (Fig. 7b). Mining areas had
an average annual decrease of 0.0086 in NDVI values, which is faster
than the average annual decrease of 0.0037 in NDVI values for human
settlements in the North.

4.2.2. Land surface temperature
Our study shows that areas surrounding the mining sites within the

ASF are experiencing the most severe level of increase in daytime-LST
(Fig. 8a), while the increase rate is slower than other areas (Fig. 8b).
Over the past 20 years, daytime-LST in areas within the ASF increased
from approximately 28.4 °C in summer and 8.32 °C in winter to 32.9 °C
and 14.11 °C with an average rate of 0.74% and 2.68% per year, re-
spectively. The increasing trend of daytime-LST is also evident in the
northern human-settled areas, where a total of 5.09 km2 area is ex-
periencing a warmer local climate during the daytime at a rate ranging
from 0.127 °C to 0.455 °C per year (Fig. 10b). The national reserve
sector S.5 and S.7 are more impacted by the increasing daytime-LST,
compared with other reserve sectors. Specifically, about 12.42 km2 in
sector S.5 and 10.19 km2 in sector S.7 have experienced an increasing
trend of daytime-LST with an average rate of 0.231 °C and 0.259 °C per
year, respectively. Margins of the ASF have also shown an increasing
trend of daytime-LST in clusters, while other LST increased areas are
distributed in a scattered pattern.

By contrast, in terms of nighttime-LST, neither increasing nor de-
creasing trend was detected in our study site. Since the study site is
located in an arid desert region, the rapid cooling process of desert soil
quickly brings land surface temperature back to the equilibria with air
temperature during nighttime.

4.2.3. Soil moisture and evapotranspiration
Our study finds that a total 2214.5 km2 areas in the study site are

experiencing a significantly decreasing trend of soil moisture over the
past 20 years. In these areas, the SMI declined from at least 0.004 index
unit to a maximum of 0.96 to a range of 0.00002–0.9, with a maximum
decrease rate of 0.0368 in SMI values per year. It is noticeable that the
increasing drought condition is prevalent in our study area without a

Fig. 5. Lithium mining area and area of yearly expansion in the ASF between 1997 and 2017. The lithium mining industry has accumulatively expanded about
59.99 km2 in the past 20 years and reached four-fold of its production scale in 1997. Detailed results are available in Supplementary Information (SI-Table 3).

Fig. 6. Spatial map of lithium mining area in the ASF between 1997 and 2017.
The color transitioning from deep blue to bright yellow represents newly de-
veloped mining area in each year.
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clear pattern of spatial distribution (Fig. 9a). The edges of mining ponds
and southeastern margins of the ASF do have a faster rate of decline
compared to the surrounding areas (Fig. 9b). Human settlements in the
north side also have an increasing drought condition with an annual
decline rate in SMI of 0.0018, however, the spatial pattern is still not
clear for these areas (Fig. 10c).

The annual mean net ET for our study site is 48.97 kg/m2/year in
the past 20 years, while almost all the areas don’t have a detectable
trend of change. Only two pixels in the northeast of the ASF have ex-
perienced a loss of ET at a rate of 0.89 kg/m2 per year.

4.3. Relationship of mining activities and environmental degradation

Since our analysis only detected changes in NDVI, daytime LST and

SMI for the study area, we examined the effect of lithium mining on
these changes. We excluded pixels with negative NDVI values to detect
the effect of mining on degrading vegetation. We also excluded the
climatic variabilities in the negative changes in NDVI by only retaining
pixels with weak or no correlation between NDVI and climate. Our
results show the expansion of lithium operations has strong negative
correlations with NDVI and SMI and strong positive correlation with
LST (Fig. 11).

The mining area is found to have a strong negative correlation with
the mean values of NDVI for vegetations having detectable negative
changes of NDVI (p-value = 0.000, R2 = 0.9027). The slope of re-
gression function indicates that expanding 1 km2 of mining area could
decrease the average NDVI value in degrading vegetations by 0.0014
(Fig. 11a). The relationship between the mining area and the mean

Fig. 7. (a) Map of areas experiencing a sig-
nificantly decreasing trend of Normalized
Difference Vegetation Index (NDVI) and (b)
Map of annual decrease rate in NDVI for NDVI
significantly decreased area between 1997 and
2017. The negative changes of NDVI are evi-
dent within the ASF, northern human-settled
area, and some national reserve sectors. Mining
areas within the ASF are encountering a faster
annual decrease in NDVI comparing to other
areas.

Fig. 8. (a) Map of areas experiencing a sig-
nificantly increasing trend of daytime Land
Surface Temperature (LST) and (b) Map of an-
nual increase rate in LST for LST significantly
increased area between 1997 and 2017. Areas
surrounding mining operations are having the
most severe level of increase in daytime-LST in
terms of the impact areas, while the increase is
slower than other areas. The national reserved
sectors S.4, S.5 and S.7 are also widely im-
pacted by the increasing LST.
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values of SMI for areas with a significantly decreasing trend of soil
moisture also shows a strong negative correlation (p-value = 0.000,
R2 = 0.6476). The result implies as mining area increases 1 km2, the
SMI value drops down by 0.0007 (Fig. 11b).

The relationship between mining expansion and LST was examined
for both summer and winter. The regression of summertime mean LST
on mining area has a calculated p-value 0.05 (p-value = 0.013) while
R2 0.5 (R2 = 0.3103). We consider mining expansion still have cer-
tain explanatory power for the increasing temperature in summer since
the relatively small R2 value can be attributed to the small sample size.
Mining area shows a strong correlation with the increasing temperature
in wintertime with a calculated p-value 0.05 and R2 > 0.5 (p-
value = 0.001, R2 = 0.5109). Based on our regression results, as
mining operation expands 1 km2, daytime-LST increases 0.0486 °C in
summer and 0.0763 °C in winter correspondingly (Fig. 11c, d).

5. Discussion

5.1. Areas affected by environmental degradation

With respect to the first research question (which parts in the studied
area have been experienced environmental degradation in the past 20 years
(1997–2017), in terms of mining land use, vegetation cover, and micro-
climate?), analyses of environmental indicators examined in this study
demonstrate that the ASF and its surrounding areas are experiencing
environmental degradation in terms of the degrading vegetation cover,
hotter local climate, and increasing dry conditions. Although the
overall rate of degradation is relatively slow, the impacted areas are
broad, including salt flats, human-settled villages, and national re-
served areas. However, this study didn’t detect enough changes in
nighttime-LST and ET over the past 20 years. This result indicates that
the relatively coarse resolution of MODIS may not be appropriate to the

Fig. 9. (a) Map of area experiencing a significantly decreasing trend of soil moisture and (b) Map of annual decrease rate in Soil Moisture Index (SMI) for SMI
significantly decreased area between 1997 and 2017. The decreasing trend of soil moisture is prevalent in the study area including national reserve sectors. Edges of
lithium ponds and southeastern margins of the ASF show a faster rate of decline compared to the surrounding areas.

Fig. 10. Annual change of degradation in the northern human settlements on (a) Normalized Difference Vegetation Index (NDVI), (b) Daytime Land Surface
Temperature (LST), and (c) Soil Moisture Index (SMI). These areas are experiencing a degrading vegetation cover at a similar rate and a warmer climate at a relatively
faster rate. The increasing drought condition is prevalent in most of the areas without a clear spatial pattern.
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environment of ASF where both natural and man-made features are
sparsely distributed. In general, the increasing drought condition is
prevalent in our study area, where 26.7% of the total area is having
increasingly drier soil (Table 1).

Areas located in mining operations are experiencing a compara-
tively faster rate of environmental degradation, especially for turning
salt flats to operation ponds and increasing drought conditions.
Although the temperature rise is relatively slow in these areas, areas
close to operation sites are still experiencing a hotter climate in a faster
than average rate. In general, large areas within the ASF are impacted
by the hotter climate and the land transformation to mining ponds.

Human settlement areas in the north are experiencing environ-
mental degradation at a rate similar to the average level (Table 1). Over
the past 20 years, 3.43 km2 of vegetated lands in the northern human-
settled region have been undergoing degradation, including the dis-
appearance of tree covers and changing to sparse and lower density
vegetation. The degradation trend of vegetation oases in human clus-
tered areas may confirm the results from an empirical study (Babidge
and Bolados, 2018) stating that many locals abandoned their agri-
culture land due to the lack of water. Besides, 5.09 km2 of these areas
are going through hotter and hotter climate, and 72.16 km2 are chan-
ging to much drier conditions (Table 1).

Four national reserve sectors in our study area are affected by the

increasing drought condition, while S.5 and S.7 are even more impacted
by the hotter climate. A total of 92.97 km2 of national reserved lands
are experiencing a significantly increasing drought condition in soil;
and 27.74 km2 are becoming warmer during the daytime over the past
20 years (Table 1). However, areas with the decreasing value of NDVI in
the sector S.4 and S.5 cannot be simply considered as the degrading
vegetation cover since these sectors are composed of wetlands and la-
goons. There is still about 0.14 km2 of vegetated lands in the S.6 and S.7
are degraded.

Climatic variabilities in the study period may also affect the ex-
amined environmental conditions in the study area, even after we have
reduced certain variabilities from local weather changes in the process
of data selection and statistical trend test. In the desert environment,
rare precipitation events may contribute considerably less than the
impact-intensive anthropogenic stressors on the local environment.
Marazuela et al. (2019b) observed the decrease of evaporation rate
after mining operations in the ASF, indicating a decline of the water
table and depletion of soil moisture due to mining activities. The short-
term changes in local weather may also have limited influence on ve-
getation health in the hyper-arid environment. Díaz et al. (2019) found
that annual and perennial plants are extraordinarily resilient in re-
sponse to climate variability in interannual (years to decades) time
frame. Moreover, herbaceous plants that are relatively vulnerable to

Fig. 11. Correlation of lithium mining expansion and environmental degradation. Mining expansion has a sufficient explanatory power to suggest the degrading
vegetation cover, hotter local climate, and the dryer conditions in this study area over the past 20 years.

Table 1
Total area of environmental degradation.

Indicators
Study Area

NDVI LST SMI

Area (km2) Average Rate
(NDVI value/yr

Area (km2) Average Rate (°C/yr) Area (km2) Average Rate (SMI value/yr

Total study area 59.94 −0.0041 919.31 0.2231 2214.51 −0.0024
Northern human settlements 3.43 −0.0037 5.09 0.2354 72.16 −0.0018
Los Flamencos National Reserve S.4 0.45 −0.0039 5.03 0.2439 21.69 −0.0035

S.5 0.18 −0.0028 10.19 0.2309 20.05 −0.0033
S.6 0.10 −0.0007 0.10 0.1999 25.23 −0.0034
S.7 0.04 −0.0036 12.42 0.2588 26.00 −0.0030
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short-term variabilities, have a low presence in the Atacama Desert.
However, existing research is still inadequate to provide a sound re-
ference to the local climate variability in temperature and precipitation.
Thus, the impact from climate variability on environmental degrada-
tions identified in this study still need future scrutiny.

5.2. Environmental degradation index

To provide the overall environmental health of the study area, we
introduced a Degradation Index (DI) using a weighted combination of
changes in environmental indicators examined in this study. We firstly
retained all pixels showing negative environment changes and stan-
dardized the change rate of each indicator to the range from 0 towards
1, which corresponds to changes from relatively slow to fast. The
standardized indicators were then weighted and summed to generate DI
with a valid range from 0 to 1. The resulted DI values were classified
into 6 classes: no degradation (DI = 0), barely degraded (0–0.2), less
degraded (0.2−0.4), moderately degraded (0.4−0.6), highly degraded
(0.6−0.8), severely degraded (0.8–1). We considered four scenarios
with different weighting sets, one with equal weights to indicators and
the rest scenarios with one indicator assigned a higher weight (Table 2).
For each pixel, the scenario that produced the lowest DI was selected as
the best scenario, and the difference between the lowest DI and mean DI
of four scenarios was defined as uncertainty. The area with high un-
certainty indicates the degradation degree could be worse than in the
best-case scenario. Subsequently, we generated: (1)a map of the best-
scenario DI and (2) a map of DI uncertainty showing the spatial dis-
tribution of the lowest possible environmental degradation and its un-
certainty. The resulted map for each scenario is provided in the Sup-
plementary Information (SI-Fig. 1).

The best-case scenario (Fig. 12a) and scenario uncertainty (Fig. 12a)
map reveal some insights on the level and uncertainty of degradation.
Most areas in the study region are barely or less degraded with rela-
tively low uncertainty. However, some human settlement areas (high-
lighted in red box) in the northern part of the region show a moderate
to high level of degradation with relatively high uncertainty. Mining
areas within the ASF are moderately degraded with high uncertainty.
Most national reserve areas (S.4-S.7) are having less or bare degrada-
tion, while a few areas still indicate moderate to high level of de-
gradation. Other areas showing a moderate or high degradation level
are also having relatively high uncertainty level.

In general, most of the areas are barely or less degraded with low
uncertainties, whereas areas moderately to highly degraded are also
associated with higher uncertainty, implying that these areas may en-
counter a worse level of degradation. Therefore, we suggest that the
moderately to highly degraded areas may need more attentions from
local decision-makers and environmental inspectors, especially for
areas with human settlements and national reserved lands.

5.3. Anthropogenic stressors on the local environment

With respect to the second research question (What is the relationship
between the expanding lithium industry and dynamic patterns of environ-
mental degradation in this area?), it is found that the fast expansion of
lithium mining operations in the ASF is found to have a strong corre-
lation with the ongoing environmental degradation in the study area.

The expanding lithium industry may be one of the important environ-
mental stressors to the overall health of the local environment, espe-
cially for the factors we examined.

To complicate the issue of mining environmental impacts, the li-
thium mining companies in the ASF have been accusing each other of
extracting more brine than what is permitted since 2013. The impact
caused by lithium extraction is hard to track because mining companies
made changes on how they monitor wells without authorization, ac-
cording to a Chile’s environmental regulator (Reuters, 2018). The en-
vironmental degradation identified in this study accords with results
from a study on the availability of water in the ASF by CORFO (CORFO,
2018), that more water and brine was leaving the system through
pumping and evaporation than was coming back in through precipita-
tions. These results are also consistent with findings from government
inspection reports (SMA, 2016) that about 32.4% of the native Algar-
robo trees on SQM’s (a mining company) property were dying since
2013. The disappearance of the native Algarrobo trees, which are
drought-tolerant species by sending roots deep into the underground to
survive, implies a water shortage in the ASF aquifer and may act as an
early warning signal of water scarcity problems.

However, potential environmental stressors other than the mining
industry, such as the booming tourism and population increase, may
also have negative impacts on the health of the local environment. The
explosion of tourism in the region of ASF since the 1990s has drama-
tically increased the local population as well as the flows of tourists
(RIDES (Research and Resources for Sustainable Development), 2005).
During high seasons, the population of tourists could reach more than
double the local population (RIDES (Research and Resources for
Sustainable Development), 2005). Over the past 15 years, the number
of tourists attracted to the Los Flamencos National Reserve has in-
creased twelve-fold, reaching 0.4 million tourists in 2016 (INE
(National Statistics Institute of Chile), 2003, 2017). The booming
tourism industry can increase both direct and indirect water use,
therefore adding water stress to already water scares destinations
(Gössling et al., 2012). Based on an estimated daily water consumption
of 200 L/tourist in Chile (Gössling, 2006), at least about 83,736,800 L
of water was consumed in 2016 in the ASF if each tourist only spends
one day there. The increasing tourist flows could pose more stress on
the local drought condition and warmer climate through water con-
sumption, but may also present other ecological impacts on the local
ecosystem such as vegetation degradation and waste production.

The notable population growth driven by the booming lithium in-
dustry and tourism opportunities could also have contributed to the
environmental degradation identified in this study in both direct and
indirect ways. Currently, according to the national census in 2017 (INE
(National Statistics Institute of Chile), 2018a), the local population has
doubled over the past 15 years and reach 10,996 in 2017, overshooting
the projected population by almost 40% (INE (National Statistics
Institute of Chile), 2018b). Therefore, the resulting increased water
consumption and other human activities could attribute to the warmer
and drier local climate. On the other hand, the availability of wage
labor provided by the lithium mining industry has attracted great labor
forces and significantly driven most villagers to shift from the agri-
culture and pastoralism lifestyle to a neoliberal cash economy (Babidge,
2013). Nowadays, more and more villagers have worked as wage labors
or contractors for lithium companies, leaving agriculture as only sup-
plementary to a cash economy (Babidge, 2013). Hence, the less atten-
tion on pastoral and agricultural sites could partly explain the vegeta-
tion degradation.

6. Conclusions

The continuously expanding mining industry is investigated to be
one of the critical environmental stressors to the overall health of the
local environment. Other possible stressors, such as the explosive
tourism industry and population increase, are still lacking investigation,

Table 2
Weighting sets of four scenarios.

Scenarios Standardized NDVI
change

Standardized LST
change

Standardized SMI
change

Scenario 1 0.33 0.33 0.33
Scenario 2 0.5 0.25 0.25
Scenario 3 0.25 0.5 0.25
Scenario 4 0.25 0.25 0.5
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which may require future research to detect their effects on the local
environment. In their efforts to manage future lithium mining expan-
sion, policy makers need to pay more attention to areas that have been
experiencing increasing LST, decreasing NDVI, and increasing drought
conditions in soil, especially in national reserved lands. We anticipate
that our analysis of lithium mining and environmental degradation will
help mining regulators, local environmental regulators, lithium in-
dustry decision-makers, and national park managers provide better
management of the world’s largest lithium production sites for a sus-
tainable future and that our analysis will assist in future research to
reveal other stressors to the local environmental degradation and pos-
sible impacts along the lithium-based transportation pathway.

Acknowledgment

The authors thank the anonymous reviewers for their comments
that helped improving the manuscript.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.jag.2019.04.016

References

Agusdinata, D., Liu, W., Eakin, H., Romero, H., 2018. Socio-environmental impacts of
lithium mineral extraction: towards a research agenda. Environ. Res. Lett. 13 (12),
123001.

USGS Mineral Commodity Summaries. https://minerals.usgs.gov/minerals/pubs/
commodity/lithium/.

Artis, D.A., Carnahan, W.H., 1982. Survey of emissivity variability in thermography of
urban areas. Remote Sens. Environ. 12 (4), 313–329.

Avdan, U., Jovanovska, G., 2016. Algorithm for automated mapping of land surface
temperature using LANDSAT 8 satellite data. J. Sens. 2016, 1–8.

Babidge, S., 2013. “Socios”: the contested morality of “partnerships” in indigenous
community-mining company relations, Northern Chile. J. Lat. Am. Caribb.
Anthropol. 18 (2), 274–293.

Babidge, S., 2016. Contested value and an ethics of resources: water, mining and in-
digenous people in the Atacama desert, Chile. Aus. J. Anthrop. 27 (1), 84–103.

Babidge, S., Bolados, P., 2018. Neoextractivism and Indigenous Water Ritual in Salar de
Atacama, Chile. Lat. Am. Perspect. 45 (5), 170–185.

Carter, G., 1998. Reflectance wavebands and indices for remote estimation of

photosynthesis and stomatal conductance in pine canopies. Remote Sens. Environ. 63
(1), 61–72.

Chen, X., Zhao, H., Li, P., Yin, Z., 2006. Remote sensing image-based analysis of the
relationship between urban heat island and land use/cover changes. Remote Sens.
Environ. 104 (2), 133–146.

CORFO (Production Development Corporation of Chile), 2018. Fiscal Instructor de la
División de Sanción y Cumplimiento Superintendencia del Medio Ambiente (in
Spanish). Retrieved from. CORFO, Santiago, Chile. https://www.documentcloud.
org/documents/5003677-Presentaci%C3%B3N-CORFO.html#document/p3/
a461155.

Deetman, S., Pauliuk, S., van Vuuren, D., van der Voet, E., Tukker, A., 2018. Scenarios for
demand growth of metals in electricity generation technologies, cars, and electronic
appliances. Environ. Sci. Technol. 52 (8), 4950–4959.

DeFries, R., Townshend, J., 1994. NDVI-derived land cover classifications at a global
scale. Int. J. Remote Sens. 15 (17), 3567–3586.

Díaz, F.P., et al., 2019. Multiscale climate change impacts on plant diversity in the
Atacama desert. Glob. Change Biol. 2019, 1–13.

Estoque, R., Myint, S., Wang, C., Ishtiaque, A., Aung, T., Emerton, L., Ooba, M., Hijioka,
Y., Mon, M., Wang, Z., Fan, C., 2018. Assessing environmental impacts and change in
Myanmar’s mangrove ecosystem service value due to deforestation (2000–2014).
Glob. Change Biol. 24 (11), 5391–5410.

Fan, C., Myint, S., Rey, S., Li, W., 2017. Time series evaluation of landscape dynamics
using annual Landsat imagery and spatial statistical modeling: evidence from the
Phoenix metropolitan region. Int. J. Appl. Earth Obs. Geoinf. 58, 12–25.

Flexer, V., Baspineiro, C.F., Galli, C.I., 2018. Lithium recovery from brines: a vital raw
material for green energies with a potential environmental impact in its mining and
processing. Sci. Total Environ. 639, 1188–1204.

Gössling, S., Peeters, P., Hall, C., Ceron, J., Dubois, G., Lehmann, L., Scott, D., 2012.
Tourism and water use: supply, demand, and security. An international review. Tour.
Manage. 33 (1), 1–15.

Gössling, S., 2006. Tourism and water. In: Gössling, S., Hall, C.M. (Eds.), Tourism &
Global Environmental Change: Ecological, Social, Economic and Political
Interrelationships. Routledge, Abingdon, UK, pp. 180–194.

Habashi, F., 1997. Handbook of Extractive Metallurgy. Wiley-VCH.
Hansen, M., DeFries, R., Townshend, J.R., Sohlberg, R., 2000. Global land cover classi-

fication at 1 km spatial resolution using a classification tree approach. Int. J. Remote
Sens. 21 (6–7), 1331–1364.

IFC (International Finance Corporation), 2017. Energy Storage Trends and Opportunities
in Emerging Markets. IFC, Boulder USA.

INE (National Statistics Institute of Chile), 2003. Turismo Informe Annual 2002. INE,
Santiago, Chile.

INE (National Statistics Institute of Chile), 2017. Turismo Informe Annual 2016. INE,
Santiago, Chile.

INE (National Statistics Institute of Chile), 2018a. National Population and Housing
Census Redatam-2017. Retrieved from. http://www.ine.cl/estadisticas/
demograficas-y-vitales.

INE (National Statistics Institute of Chile), 2018b. Estimaciones y Proyecciones de La
Población de Chile 1992-2050 Total País. Retrieved from. http://www.ine.cl/
estadisticas/demograficas-y-vitales.

Ishtiaque, A., Myint, S., Wang, C., 2016. Examining the ecosystem health and

Fig. 12. (a) Spatial map showing the best-case scenario of environmental degradation based on the four different scenarios examined in the study area; (b) Spatial
map showing the uncertainty in the best-scenario map; the deeper color in red indicates a higher level of uncertainty compared to other scenarios.

W. Liu, et al. Int J Appl  Earth Obs Geoinformation 80 (2019) 145–156

155

https://doi.org/10.1016/j.jag.2019.04.016
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0005
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0005
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0005
https://minerals.usgs.gov/minerals/pubs/commodity/lithium/
https://minerals.usgs.gov/minerals/pubs/commodity/lithium/
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0015
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0015
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0020
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0020
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0025
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0025
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0025
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0030
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0030
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0035
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0035
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0040
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0040
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0040
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0045
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0045
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0045
https://www.documentcloud.org/documents/5003677-Presentaci%C3%B3N-CORFO.html#document/p3/a461155
https://www.documentcloud.org/documents/5003677-Presentaci%C3%B3N-CORFO.html#document/p3/a461155
https://www.documentcloud.org/documents/5003677-Presentaci%C3%B3N-CORFO.html#document/p3/a461155
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0055
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0055
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0055
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0060
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0060
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0065
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0065
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0070
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0070
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0070
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0070
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0075
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0075
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0075
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0080
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0080
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0080
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0085
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0085
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0085
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0090
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0090
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0090
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0095
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0100
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0100
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0100
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0105
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0105
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0110
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0110
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0115
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0115
http://www.ine.cl/estadisticas/demograficas-y-vitales
http://www.ine.cl/estadisticas/demograficas-y-vitales
http://www.ine.cl/estadisticas/demograficas-y-vitales
http://www.ine.cl/estadisticas/demograficas-y-vitales
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0130


sustainability of the world’s largest mangrove forest using multi-temporal MODIS
products. Sci. Total Environ. 569–570, 1241–1254.

Jaskula, B.W., 2017. Lithium: Mineral Commodity Summaries (2017). United States
Geological Survey, Reston, VA.

Jaskula, B.W., 2018. Lithium: Mineral Commodity Summaries (2018). United States
Geological Survey, Reston, VA.

Joyce, A.O., 1998. Lithium: Mineral Commodity Summaries (1998). United States
Geological Survey, Reston, VA.

Kampf, S., Tyler, S., Ortiz, C., Muñoz, J., Adkins, P., 2005. Evaporation and land surface
energy budget at the Salar de Atacama, Northern Chile. J. Hydrol. 310 (1-4),
236–252.

Kendall, M.G., 1948. Rank Correlation Methods, 4th ed. 1970. Charles Griffin and Co.,
Ltd., London, UK.

Lee, R., Yu, F., Price, K., Ellis, J., Shi, P., 2002. Evaluating vegetation phenological pat-
terns in Inner Mongolia using NDVI time-series analysis. Int. J. Remote Sens. 23 (12),
2505–2512.

Li, Z., Tang, B., Wu, H., Ren, H., Yan, G., Wan, Z., Trigo, F., Sobrino, I.A., 2013. Satellite-
derived land surface temperature: current status and perspectives. Remote Sens.
Environ. 131, 14–37.

Mann, H.B., 1945. Nonparametric tests against trend. Econometrica 13, 245–259.
Marazuela, M.A., Vázquez-Suñé, E., Ayora, C., García-Gil, A., Palma, T., 2019a.

Hydrodynamics of salt flat basins: the Salar de Atacama example. Sci. Total Environ.
651, 668–683.

Marazuela, M.A., Vázquez-Suñé, E., Ayora, C., García-Gil, A., Palma, T., 2019b. The effect
of brine pumping on the natural hydrodynamics of the Salar de Atacama: the
damping capacity of salt flats. Sci. Total Environ. 654, 1118–1131.

Molina Camacho, F., 2016. Intergenerational dynamics and local development: mining
and the indigenous community in Chiu Chiu, El Loa Province, northern Chile.
Geoforum 75, 115–124.

Mu, Q., Heinsch, F.A., Zhao, M., Running, S.W., 2007. Development of a global evapo-
transpiration algorithm based on MODIS and global meteorology data. Remote Sens.
Environ. 11, 519–536.

Myneni, R., Hall, F., Sellers, P., Marshak, A., 1995. The interpretation of spectral vege-
tation indexes. IEEE Trans. Geosci. Remote 33 (2), 481–486.

Ngie, A., Abutaleb, K., Ahmed, F., Darwish, A., Ahmed, M., 2014. Assessment of urban
heat island using satellite remotely sensed imagery: a review. S. Afr. Geogr. J. 96 (2),
198–214.

Nishishiba, M., Jones, M., Kraner, M., 2014. Bivariate correlation. Research Methods and
Statistics for Public and Nonprofit Administrators: A Practical Guide. Sage
Publications, US, pp. 223–238.

Pettorelli, N., Vik, J., Mysterud, A., Gaillard, J., Tucker, C., Stenseth, N., 2005. Using the
satellite-derived NDVI to assess ecological responses to environmental change.
Trends Ecol. Evol. 20 (9), 503–510.

Reed, B.C., Brown, J.F., VanderZee, D., Loveland, T.R., Merchant, J.W., Ohlen, D.O.,
1994. Measuring phenological variability from satellite imagery. J. Veg. Sci. 5 (5),
703–714.

Reuters, 2018. A Water Fight in Chile’s Atacama raises Questions over Lithium Mining.
published on October 18. Retrieved from. https://www.reuters.com/article/us-chile-
lithium-insight/a-water-fight-in-chiles-atacama-raises-questions-over-lithium-
mining-idUSKCN1MS1L8.

RIDES (Research and Resources for Sustainable Development), 2005. Millennium
Ecosystem Assessment: Human well-being and sustainable management in San Pedro
de Atacama, Chile – Executive report. RIDES, Santiago, Chile.

Romero, H., Méndez, M., Smith, P., 2012. Mining development and environmental in-
justice in the Atacama Desert of Northern Chile. Environ. Justice 5 (2), 70–76.

Running, S.W., 1990. Estimating primary productivity by combining remote sensing with
ecosystem simulation. In: Hobbs, R.J., Mooney, H.A. (Eds.), Remote Sensing of
Biosphere Functioning. Springer-Verlag Inc., New York, USA, pp. 65–86.

Salas, J., Guimerà, J., Cornellà, O., Aravena, R., Guzmán, E., Tore, C., von Igel, W.,
Moren, R., 2010. Hidrogeología del sistema lagunar del margen este del Salar de
Atacama (Chile). Boletín Geológico y Minero 121 (4), 357–372.

Schiebe, F.R., Harrington Jr, J.A., Ritchie, J.C., 1992. Remote sensing of suspended se-
diments: the Lake Chicot, Arkansas project. Int. J. Remote Sens. 13 (8), 1487–1509.

Sen, P.K., 1968. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat.
Assoc. 63, 1379–1389.

Seto, K.C., Fragkias, M., Güneralp, B., Reilly, M.K., 2011. A meta-analysis of global urban
land expansion. PLoS One 6 (8), e23777.

SMA (Superintendency of the Environment of Chile), 2016. Formula Cargos Que Indica a
SQM Salar S.A. Retrieved from. SMA, Santiago, Chile. https://www.
documentcloud.org/documents/5003676-Formulaci%C3%B3N-De-Cargos.html#
document/p14/a461122?.

Stamp, A., Lang, D., Wäger, P., 2012. Environmental impacts of a transition toward e-
mobility: the present and future role of lithium carbonate production. J. Clean. Prod.
23 (1), 104–112.

Steel, R.G., Torrie, J.H., 1980. Principles and Procedures of Statistics: a Biometrical
Approach, second ed. McGraw-Hill, New York.

Studer, S., Stöckli, R., Appenzeller, C., Vidale, P.L., 2007. A comparative study of satellite
and ground-based phenology. Int. J. Biometeorol. 51 (5), 405–414.

Tran, T., Luong, V.T., 2015. Lithium production processes. In: In: Chagnes, A., Świa-
towska, J. (Eds.), Lithium Process Chemistry 2015. Elsevier, pp. 81–124.

Wang, C., Myint, S., Wang, Z., Song, J., 2016. Spatio-temporal modeling of the urban heat
island in the phoenix metropolitan area: land use change implications. Remote Sens.
8 (3), 185.

Wang, C., Wang, C., Myint, S., Wang, Z., 2017. Landscape determinants of spatio-tem-
poral patterns of aerosol optical depth in the two most polluted metropolitans in the
United States. Sci. Total Environ. 609, 1556–1565.

Yang, J., Gong, P., Fu, R., Zhang, M., Chen, J., Liang, S., Xu, B., Shi, J., Dickinson, R.,
2013. The role of satellite remote sensing in climate change studies. Nat. Clim.
Change 3 (1), 875–883.

Zhan, Z., Qin, Q., Abduwasit, G., Wang, D., 2007. NIR-red spectral space based new
method for soil moisture monitoring. Sci. China Ser. D Earth Sci. 50 (2), 283–289.

W. Liu, et al. Int J Appl  Earth Obs Geoinformation 80 (2019) 145–156

156

http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0130
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0130
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0135
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0135
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0140
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0140
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0145
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0145
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0150
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0150
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0150
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0155
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0155
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0160
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0160
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0160
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0165
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0165
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0165
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0170
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0175
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0175
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0175
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0180
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0180
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0180
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0185
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0185
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0185
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0190
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0190
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0190
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0195
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0195
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0200
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0200
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0200
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0205
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0205
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0205
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0210
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0210
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0210
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0215
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0215
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0215
https://www.reuters.com/article/us-chile-lithium-insight/a-water-fight-in-chiles-atacama-raises-questions-over-lithium-mining-idUSKCN1MS1L8
https://www.reuters.com/article/us-chile-lithium-insight/a-water-fight-in-chiles-atacama-raises-questions-over-lithium-mining-idUSKCN1MS1L8
https://www.reuters.com/article/us-chile-lithium-insight/a-water-fight-in-chiles-atacama-raises-questions-over-lithium-mining-idUSKCN1MS1L8
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0225
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0225
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0225
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0230
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0230
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0235
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0235
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0235
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0240
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0240
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0240
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0245
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0245
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0250
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0250
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0255
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0255
https://www.documentcloud.org/documents/5003676-Formulaci%C3%B3N-De-Cargos.html#document/p14/a461122?
https://www.documentcloud.org/documents/5003676-Formulaci%C3%B3N-De-Cargos.html#document/p14/a461122?
https://www.documentcloud.org/documents/5003676-Formulaci%C3%B3N-De-Cargos.html#document/p14/a461122?
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0265
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0265
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0265
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0270
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0270
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0275
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0275
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0280
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0280
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0285
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0285
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0285
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0290
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0290
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0290
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0295
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0295
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0295
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0300
http://refhub.elsevier.com/S0303-2434(19)30099-6/sbref0300

	Spatiotemporal patterns of lithium mining and environmental degradation in the Atacama Salt Flat, Chile
	Introduction
	Study area
	Materials and methods
	Materials
	Image processing
	Image classification for mining and non-mining
	Time-series trend analysis
	Correlation analysis

	Results and analysis
	Time-series changes of mining
	Time-series changes of environmental degradation
	Vegetation cover
	Land surface temperature
	Soil moisture and evapotranspiration

	Relationship of mining activities and environmental degradation

	Discussion
	Areas affected by environmental degradation
	Environmental degradation index
	Anthropogenic stressors on the local environment

	Conclusions
	Acknowledgment
	Supplementary data
	References




