
Microbial Communities From the World’s Largest Lithium
Reserve, Salar de Atacama, Chile: Life at High
LiCl Concentrations
Carolina F. Cubillos1,2,3 , Pablo Aguilar4 , Mario Grágeda2 , and Cristina Dorador1,3,5

1Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta,
Antofagasta, Chile, 2Department of Chemical Engineering and Mineral Process and Center for Advanced Study of Lithium
and Industrial Minerals (CELiMIN), Universidad de Antofagasta, Antofagasta, Chile, 3Centre for Biotechnology and
Bioengineering, Universidad de Chile, Santiago, Chile, 4Lake and Glacier Ecology Research Group, Deparment of Ecology,
University of Innsbruck, Innsbruck, Austria, 5Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos
Biológicos, Universidad de Antofagasta, Antofagasta, Chile

Abstract Salar de Atacama is one of the largest global reservoirs of natural lithium brines (mean lithium
concentration = 1,500 ppm), enabling Chile to be a leading producer of lithium products. This large salar
(3,000 km2), located in the Atacama Desert at 2,300 m above sea level, is dominated by microorganisms;
however, little is known about the microbes present in the brines associated with this economically
important mining process. Here we study lithium as a modulator of microbial richness and diversity in brines
representing natural conditions (34.7% salinity) and conditions prior to lithium production with a
concentrated brine (55.6% salinity). Brines only supported a single archaeal family (Halobacteriaceae):
natural brines included the archaeal genera Halovenus, Natronomonas, Haloarcula, and Halobacterium.
Concentrated brines included the archaeal genera Halovenus, Halobacterium, and Halococcus. The most
abundant bacterial families in natural brine were Rhodothermaceae and Staphylococcaceae;
Xanthomonadaceae dominated the bacterial community in the concentrated brine. A comparison of entire
microbial community (Archaea and Bacteria) revealed that only seven operational taxonomic units were
shared between samples, all of which were Archaea. Further, our results showed that Bacteria were
phylogenetically more diverse and rich in the concentrated brine, while archaeal diversity was maximized in
the natural brine. The concentrated lithium brines of the Salar de Atacama represent one of the most saline
environments described to date (dominated by LiCl). We suggest that elevated concentrations of lithium
could greatly modulate microbial diversity and give insights into the adaptive biology of microorganisms
required to cope with extremely high concentrations of salts that extend beyond that of NaCl, a far more
commonly studied salt.

Plain Language Summary Lithium is a main component of many of the batteries that we rely on
for our daily use. In the last years, nearly 40% of all lithium obtained globally was from a single fragile
salt-lake ecosystem: Salar de Atacama in the Atacama Desert of northern Chile. This salar has extremely saline
waters called brines (dominated by NaCl, aka table salt), which are naturally highly concentrated in lithium
and concentrated in evaporation ponds. In total, concentrated brines has a salinity of 55.6% (ocean
salinity = 0.3%), representing one of the most saline environments described on Earth to date (dominated by
lithium chloride). Our research has shown that concentrated brines support life and are dominated by
hundreds of species of microorganisms. Due to saline stress these “extremophiles” have developed very
special (and previously undescribed) strategies to survive in this lithium soup. These results have implications
beyond Earth: they have marked implications for our understanding for the potential for life on Mars, where
liquid water is known to occur as brine. Although lithium production has clear economic importance, our
results show that we should consider how we will preserve these unusual ecosystems that act as reservoirs of
unique microbial life.

1. Introduction

Located in the central Andes of northern Chile, the Salar de Atacama has a surface area of 3,000 km2

(Lowenstein & Risacher, 2009). It was formed in the early Late Cretaceous as a consequence of the inversion
of the Mesozoic backarc and is located at an elevation of 2,300 m above sea level (Mpodozis et al., 2005).
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Summary: there is quite a diversity of microbes in natural brine and concentrated brine.



Aquatic habitats in the salar are highly saline, with brines being dominated by NaCl (Lowenstein & Risacher,
2009). Briefly, brines are defined as concentrated salt solutions that naturally occur in the form of natural
coastal lagoons, salt and soda lakes, or as artificial salterns or saltworks (Trüper & Galinski, 1986) and are typi-
cally associated with NaCl. Brines from Salar de Atacama are formed under particular conditions that deter-
mine not only their physical and chemical characteristics but also the composition of its microbial
communities. These saline systems include a number of different constituents: these include a liquid fraction,
largely made up of chlorinated brines; a detrital fraction, consisting of sands, salts, and intertwined clays in
the saline body; and a salt fraction, produced by the deposition of different salts resulting in areas dominated
by carbonate, sulfate, and chlorides (Vila, 2010). Of these salts, lithium is important in the Salar de Atacama,
which exhibits some of the highest reported concentrations of lithium in the world (Munk et al., 2016), with a
mean concentration of 1,500 ppm (1.5 g/L) of Li (Habashi, 1997). The salar has been estimated to include total
reserves of lithium in excess of 1,200,000 t (Vine, 1976).

Lithium is an alkali metallic element with a low melting point (Habashi, 1997) and is the 27th most abundant
element in nature (Aral & Vecchio-Sadus, 2008; Habashi, 1997). The bulk of lithium is found in natural brines,
and half of all world reserves are found in three countries in South America (Argentina, Bolivia, and Chile; Del
Barco & Foladori, 2014). In recent years, extraction of lithium from natural brines has markedly increased:
Chile dominates world production with the Salar de Atacama being the principal source. Here lithium is
extracted by pumping brines into shallow evaporation ponds, followed by evaporation under controlled con-
ditions that largely eliminates other components/ions (Gruber et al., 2011). In 2004, Garret showed that the
chemical composition of natural brines from Salar de Atacama is dominated by sodium (91 ppm), potassium
(23,600 ppm), lithium (1,570 ppm), and magnesium (9,650 ppm). The mining industry in the region takes
advantage of high evaporation rates (3,700 mm/year) and solar radiation (6.3 × 106 cal·m�2·day), combined
with low precipitation rates (10–25 mm/year), to allow the lithium extraction (Garcés, 2000; Garrett, 2004).
During the initial phase of the extraction process (Figure S1), lithium is concentrated from 0.12% to 6% in
solar evaporation ponds (Garcés, 2000; Garrett, 2004). This concentrated brine is subsequently transported
to a chemical process plant, where lithium carbonate is obtained as a final product. Although the chemical
composition of salty brines from Salar de Atacama has been extensively studied (e.g., Garcés, 2000; Garrett,
2004; Vila, 2010), little attention has been paid to microbial life associated with these brines. Particularly, stu-
dies examining the effects of high concentrations of lithium in microorganisms, as well the changes in micro-
bial community structure in these brines during this economically important mining process of Chile
are lacking.

Hypersaline environments have been widely studied, often with a focus on their saline compositions, high
salinity and in some case, to understand microbial community composition. Some sites have been particu-
larly well studied, including the Great Salt Lake (dominated by NaCl; Brock, 1975), Dead Sea (MgCl2; Oren,
1992), Salar de Uyuni (NaCl/LiCl; Haferburg et al., 2017), and Abu Gabara Lake (Na2CO3; Imhoff et al., 1978).
Halophile, or salt-loving organisms are classified as slight, moderate or extreme, depending in the concentra-
tions of salts required for growth (DasSarma & DasSarma, 2012). Generally, the main bacterial groups
detected in saline environments belong to Alphaproteobacteria, Gammaproteobacteria, Actinobacteria,
and Bacteroidetes (Oren et al., 2014; Ventosa et al., 2015), and Euryarchaeota and Nanohaloarchaeota in
the Archaea (Mora-Ruiz et al., 2018; Ochsenreiter et al., 2002). In the case of lithium brines, only
Halobacteriaceae, a family within Euryarchaeota (Haferburg et al., 2017), have been reported.

The biological role of lithium remains unclear, and it has been described as an element that does not appear
to be essential for life (Wackett et al., 2004). It has a remarkably high capacity to replace other cations (Na+, K+,
Mg+2, and Ca+2) in living organisms, due to its reduced ionic radius and high polarizing strength (Sapse &
Schleyer, 1995; Shahzad et al., 2017). In the case of prokaryotes, it has been suggested that some fungal
groups have resistance or tolerance mechanisms against lithium (de Assunção, 2012). Further, other effects
of lithium on microbial cells have been demonstrated including the stimulation of autolysis (Sugahara
et al., 1983) and sporulation (Warburg et al., 1985), as well as growth inhibition (Kurita & Funabashi, 1984;
Takenishi & Takada, 1984). Conversely, lithium has been used as a growth medium for the isolation of
Straphylococcus aureus, Listeria monocytogenes, and Bifidobacterium sp. (Cox et al., 1990; Lapierre et al.,
1992; Minor & Marth, 1976), and evidence exists of its accumulation in bacteria, actinomycetes, fungi, and
yeasts (Perkins & Gadd, 1993; Tsuruta, 2005). In addition, it has been shown that Micrococcus varians ssp.
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halophilus, a moderate halophilic bacterium, can grow in concentrations of up to 1.5 M of lithium chloride
(Kamekura & Onishi, 1982), one of the highest values reported.

Despite the growing interest in the extraction and use of lithium to produce electrical appliances, there is lit-
tle knowledge regarding the composition of microbial communities present in lithium brines, which can be
considered as an underexplored microbial habitat. The aims of this study are to determine and to describe
the diversity and composition of Archaea and Bacteria present in natural and concentrated, highly lithium-
enriched brines from Salar de Atacama. We also aimed to clarify the role of lithium as a modulator of changes
in microbial diversity associated with the concentration process of brines in the Salar de Atacama. Thus, our
results described the microbial community composition from one environment with high concentrations of
non-NaCl salts, which may be key for approaches in the search for extraterrestrial life, for example, on other
planets or celestial bodies.

2. Methods
2.1. Study Area and Sampling

The industrial process of lithium extraction from Salar de Atacama brines begins with the extraction of natural
brine from a depth of 50 m (>31.5 L/s) from the saline crust of the Salar (Figure 1). These brines are subse-
quently deposited in storage pools, where local environmental conditions such as the high evaporation rate
(3,200 mm/year), minimal average rainfall (10 mm/year) and elevated concentrations of solar radiation
(6.3 × 106 cal·m�2·day) allows the evaporation of water and crystallization/precipitation of salts over a
sequential process of 12–14 months (Garcés, 2000). Here two samples of different types of brines were ana-
lyzed: a natural brine with 0.16% of lithium and a concentrated brine from the industrial process with 8.12%
of lithium. Both brines are liquid (Figure S2); however, the concentrated brine was highly viscous with a yel-
low hue. Five liters of each brine were collected directly from the evaporation pools (initial and final stage
respectively) in August 2014. Previous studies have shown that the different evaporation pools exhibit a
growing salt concentration leading by lithium (Garrett, 2004). Due to the restricted access (only two main
companies produce lithium in Chile) and sampling difficulties in the Salar de Atacama, it was unfortunately
not possible to sample the entire process. However, this is one of the first descriptions of microbial commu-
nities associated with lithium evaporation ponds.

Figure 1. Map of Salar de Atacama and satellite image of evaporation ponds of lithium brines concentration process (blue
squares; source EarthExplorer, U.S. Geological Survey, https://earthexplorer.usgs.gov/).
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2.2. Characterization of Brines

Both brines were stored at 4 °C in the dark until processing. Lithium, magnesium, sodium, potassium, and cal-
cium were measured by direct aspiration flame-air atomic absorption spectrophotometry (Model220FS-
Varian, Inc.). Chloride measurements were made through the argentometric method, and finally, sulfate by
sulfate determination through drying residue. Furthermore, we measured acidity (acid-base volumetric ana-
lysis), conductivity (Metrohm conductivity-five rings), density (Anton Paar, model DSA 5000 M), pH (781
pH/Ion Meter-Metrohm), salinity (absolute salinity calculated from chemical analysis), surface tension
(Lauda TD-3), total dissolved salts (dried at 180 °C-SM 2540 C), total organic carbon (SM 5310 C), turbidity
(Turbidimeter Zhifong, model WGZ-B), viscosity (viscometer AVS 310 Schott Gerate), and water activity
(Novasina aw center, model AWC503-C; American Public Health Association, 1915). In parallel, we measured
the presence of organic solvents, hydrocarbons, and oils in both brines (SM 5220 B).

2.3. DNA Extraction and 16S rRNA Gene Massive Sequencing

Two treatments were used to obtain genomic DNA from brine samples. The first consisted of filtering 50 mL
of both brines through 0.22-μm filters (Supor 200 Membrane Disc Filters, Pall Corporation). The second used
1 mL of brines, which was transferred directly to a 2-ml PowerBead tube (MoBio Lab, Inc). Samples were then
homogenized using a bead beater with 5 repeated, 1-min cycles. Genomic DNA was subsequently extracted
from each treatment for both brines using the PowerBiofilm DNA Isolation kit (MoBio Lab, Inc), following the
manufacturer’s protocol. The concentration and quality of DNA were measured with a Nanodrop spectro-
photometer (Nanodrop 8000, Thermo Scientific). DNA concentration was higher in the filtered treatment
for natural brines (8.8 ng/μl), and in the direct extraction for concentrated brines (5.6 ng/μl); therefore, these
treatments were chosen for further analysis. DNA samples were sent to the Research and Testing Laboratory
(Lubbock, Texas, USA) for Illumina sequencing. Samples were amplified for sequencing in a two-step process.
The forward primer was constructed with (50-30) the Illumina i5 sequencing primer (TCGTCGGCAGCGTCAG
ATGTGTATAAGAGACAG) and the primer 515F (GTGCCAGCMGCCGCGGTAA; Caporaso et al., 2011). The
reverse primer was constructed with (50-30) the Illumina i7 sequencing primer (GTCTCGTGGGCTCGGAGAT
GTGTATAAGAGACAG) and the 806R primer (GGACTACHVGGGTWTCTAAT; Caporaso et al., 2011).
Amplifications were performed in 25-μl reactions with Qiagen HotStar Taq master mix (Qiagen Inc,
Valencia, California), 1 μl of each 5-μM primer, and 1 μl of template. Reactions were performed on ABI
Veriti thermocyclers (Applied Biosytems, Carlsbad, California) under the following thermal profile: 95 °C for
5 min, then 35 cycles of 94 °C for 30 s, 54 °C for 40 s, 72 °C for 1 min, followed by one cycle of 72 °C for
10 min, and 4 °C hold. Products from the first stage amplification were added to a second PCR based on qua-
litatively determine concentrations. Primers for the second PCR were designed based on the Illumina Nextera
PCR primers as follows: Forward: AATGATACGGCGACCACCGAGATCTACAC [i5index] TCGTCGGCAGCGTC;
Reverse: CAAGCAGAAGACGGCATACGAGAT [i7index]GTCTCGTGGGCTCGG. The second stage amplification
was run the same as the first stage except for 10 cycles. Amplification products were visualized with eGels
(Life Technologies, Grand Island, New York). Products were then pooled equimolar and each pool was size
selected in two rounds using Agencourt AMPure XP (BeckmanCoulter, Indianapolis, Indiana) in a 0.75 ratio
for both rounds. Size selected pools were then quantified using the Quibit 2.0 fluorometer (Life
Technologies) and loaded on an Illumina MiSeq (Illumina, Inc. San Diego, California) 2 × 300 flow cell at
10 pM. Raw amplicons reads have been deposited in the Sequence Read Archive of NCBI under accession
number SRP091434.

2.4. Data Analyses

Illumina reads were processed using Mothur version 1.27.0 (Schloss et al., 2009), following the standard
operational procedure (www.mothur.org/wiki/Miseq_SOP) (Schloss et al., 2011). The screen.seqs command
was used to cut off sequences and remove any sequence that was not within the range 100–400 pb. The
sequences were aligned with the database SILVA compatible with Mothur. Chimeras were eliminated using
UCHIME implemented in Mothur. The commands classify.seqs and remove.lineage were used to identify and
remove pollutants classified as mitochondrial, chloroplast, Eukarya, and unknown. In total 47,865 reads from
both brines studied were grouped into operational taxonomic units (OTUs), at the 3% level of divergence
using the cluster.classic command.
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The exponential of Shannon entropy of the samples was used to calculate the alpha diversity of the samples,
according to sample completeness instead of equal sample size (Chao & Jost, 2012) using the iNEXT package
in R, to compute and plot seamless rarefaction and extrapolation sampling curves for this diversity index
(Hsieh et al., 2016). To test for differences in microbial composition and relative abundances, samples were
randomly subsampled to the same size according to the sample with the smallest number of reads. A relaxed
neighbor joining phylogenetic tree was constructed using CLEARCUT (Evans et al., 2006) implemented in
Mothur and visualized through iTOL (http://itol.embl.de/) (Letunic & Bork, 2011).

The Mothur shared and taxonomy files were converted to a Cytoscape network file using a custom R script
(Neave et al., 2014). The data set was used without singletons. The network containing OTUs and samples
as nodes, and edges were drawn between OTUs and brines in which they were detected. The weight of
the edge was proportional to the abundance of the OTU. The networks were visualized using Cytoscape
v3.5.0 (Shannon et al., 2003).

3. Results
3.1. Physicochemical Characteristics

The main ions detected in natural brine were sodium and chloride, while lithium and chloride dominated
concentrated brines (Figure 2 and Table S1 in the supporting information) and ion concentrations weremark-
edly different in the two brines. Both brines were circumneutral (natural pH = 6.9; concentrated = 7.3). The
brines were both hypersaline (natural salinity = 347; concentrated = 556 g/L; Table 1), total dissolved solids
(natural TDS = 348: concentrated = 566 g/L), and total organic carbon (natural TOC = 6.4; concen-
trated = 8.0 mg/L). Conductivity was 4 times higher in the natural than in the concentrated brines, reflecting
the process of solar evaporation, which enriches the brines in solutes (salts) and decreases the amount of
water present. Surface tension values were similar in both brines (natural = 80; concentrated = 86 mN/m).
The turbidity of the natural brine (2 NTU) was lower than that recorded from concentrated brines (82 NTU),
while concentrated brines (26 mPa·s) were more viscous than the natural one (2 mPa·s). The differences in
composition and concentrations of ions highlight the effects of the industrial process involved in

Figure 2. Maucha diagrams characterizing the anionic and cationic content of natural brine, with NaCl concentrations of
255 g/L; and concentrated brine, with LiCl concentrations of 495 g/L.

Table 1
Physicochemical Parameters of Recorded From Concentrated and Natural Brines From the Salar de Atacama, Chile

Samples
Acidity
(g/L)

Conductivity
(mS/cm)

Density
(g/ml)

Dinamic
viscosity
(mPa·s) pH

Salinity
(g/L)

Surface
tension
(mN/m)

Turbidity
(NTU)

Total dissolved
solids (g/L)

Total organic
carbon (mg/L)

Water
activity
(aw)

Concentrated brine 2 9.7 59 1.32 26.28 7.03 556.1 86.4 82 566.6 8.0 ND
Natural brine ND 231 1.22 2.23 6.92 347.3 80.2 < 2 348.8 6.4 0.74

Note. Measuring temperature 22–25 °C. ND not detected.
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concentrating the brines (Figure S1). There were no detectable concentrations of organic solvents, hydrocar-
bons, or oils in both brines.

3.2. Differences in Microbial Community Structure Between Brines

After postsequencing cleaning, 591 reads (grouped in 50 OTUs) were classified as Bacteria in the natural
brine. A greater number of reads (45,731 grouped in 158 OTUs) was obtained from the concentrated brine.
Conversely, in Archaea 1,194 reads (grouped in 193 OTUs) were obtained in the natural brine and 349 reads
(grouped in 16 OTUs) from the concentrated brine. Bacterial richness was 3 times higher in the concentrated
brine compared with the natural one, but bacterial diversity (Shannon exponential index) was similar in both
brines (Figure 3). Archaeal diversity was lower in the concentrated brine (Shannon = 6) compared to natural
brine (Shannon = 22). This change in brine microbial community composition was corroborated by quantifi-
cation of 16S rRNA gene of Archaea through Q-PCR analysis (data not shown). The patterns of microbial rich-
ness shown in the samples was reflected by the results of phylogenetic comparisons: bacteria were more
phylogenetically diverse in the concentrated brine (Figure 4a) and archaea was more phylogenetically
diverse in natural brine (Figure 4b). These results show that natural brines are dominated by Archaea, while
Bacteria dominate concentrated brines.

3.3. Microbial Community Composition

Natural and concentrated brines only supported a single halophilic archaeal family: the Halobacteriaceae,
which differed in relative abundance at the genus level between the two brines (Figure S3a). This likely
reflected differences in the concentration of salts of sodium chloride and lithium chloride. The most abun-
dant archaeal genera (relative abundance) found in natural brine were Halovenus (26.8%), Natronomonas
(20.1%), Haloarcula (14%), Halobacterium (13%), Halorientalis (4.6%), Halomicroarcula (1.7%), and
Halorubrum (1.6%). In addition, the natural brine included a high relative abundance (17%) of unclassified
reads in the family Halobacteriaceae. Other genera including Candidatus Halobonum, Halobellus, and
Halococcus were present at low relative abundances (<1%).

In the concentrated brine, Halovenus was the most abundant archaeal genus (41%), followed by Haloarcula,
Halomicroarcula and Natronomonas, which showed lower relative abundance relative to the natural brine.
Further, unclassified reads within Halobacteriaceae family reached 2.3% of relative abundance in the concen-
trated brine. Halobacterium and Halococcus were the only genera displaying higher abundance in concen-
trated brine relative to natural brine. This was particularly marked in Halococcus, which represented 15% of
reads in concentrated brines and only 0.5% in natural brines.

Figure 3. The Shannon exponential index between samples. The gray shadow shows estimated 95% confidence intervals.
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We examined bacterial community composition at family level (Figure S3b), due to the large number of bac-
terial genera detected. Only 34 families were identified in total and 19 bacterial groups were considered as
unclassified at order level. Together, both the Rhodothermaceae (Bacteroidetes) and 2B4
(Gammaproteobacteria) families contributed 65.1% of total bacterial composition in the natural brine. The
family Rhodothermaceae (56% relative abundance) was solely represented by the genus Salinibacter: the
family 2B4 (9.1% relative abundance) was represented by unclassified genera. However, other families also
made considerable contributions including an undescribed family, represented by the genus
Thiohalorhabdus made a contribution of 15.3% in the natural brine. A total of 8.9% was represented by
unclassified reads associated with the order Oceanospirillales order, and 2.7% was represented by unclassi-
fied bacteria. Other families were detected but at a low relative abundance (<1%), including:

Figure 4. Phylogenetic relationship of taxa found in the samples. Barcharts in the outer ring show the abundance of OTUs
in natural brine (red) and concentrated brine (brown). (a) Bacteria domain; (b) Archaea domain. Note that some OTUs occur
in two samples. OTU = operational taxonomic unit.
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Rhodospirillaceae (0.8%), Family I (Cyanobacteria; 0.7%), Desulfobulbaceae (0.7%), Xanthomonadaceae
(0.5%), Chromatiaceae (0.5%), Cyclobacteriaceae (0.3%), Draconibacteriaceae (0.3%), Rhodobacteraceae
(0.3%), Flavobacteriaceae (0.3%), Alteromonadaceae (0.2%), Carnobacteriaceae (0.2%), Marinilabiaceae
(0.2%), Oceanospirillaceae (0.2%), and Planctomycetaceae (0.2%).

A markedly different bacterial community composition was observed in concentrated brine relative to nat-
ural brine, for example, the Rhodothermaceae family was not detected, and the families
Xanthomonadaceae (relative abundance = 39.8%) and Staphylococcaceae (26.9%) dominated the bacterial
community. Within the Xanthomonadaceae, 99.9% of reads were unclassified; 99.9% of reads associated with
the Staphylococcaceae were related with the genus Staphylococcus. In addition, unclassified Actinobacteria
was detected with 17% of relative abundance. Other families including the Actinomycetaceae,
Carnobacteriaceae, Family_XI (Cyanobacteria), and Rhodobacteraceae were detected at low relative abun-
dances (between 1.8% and 2.4%). Fourteen other families were detected from concentrated brine with very
low relative abundance (<1%). They were classified as Acetobacteraceae, Bacillaceae, Comamonadaceae,
Corynebacteriaceae, Family XIII (Cyanobacteria), Geodermatophilaceae, Litoricolaceae, Microbacteriaceae,
Moraxellaceae, Paenibacillaceae, Pseudomonadaceae, Rhodocyclaceae, Solirubrobacteraceae, and
Veillonellaceae. Of the reads classified at a family level, 61% were unclassified at genus level.

A comparison of the microbial communities (Archaea and Bacteria) retrieved from the two types of brine
showed that only seven OTUs were found in common (Figure S4): all were Archaea (Halobacterium,
Natronomonas, Halomicroarcula, Halorientalis, Halococcus, Haloarcula, and Halovenus).

4. Discussion

We examined two lithium brines (natural and concentrated brines): they showed markedly different compo-
sitions in terms of both their physiochemistry and their microbial communities. The main physicochemical
differences between the two brines were viscosity and turbidity, where they were higher in the concentrated
brine, giving it a yellow hue and an oily character. Elevated values in these parameters have been associated
with high concentrations of salts (Jones & Talley, 1933; Onsager & Samaras, 1934). The Na+ and Li+ (principal
ions of brines) are considered to be salting-out agents, as they decrease the solubility of nonpolar solutes in
water (Breslow & Guo, 1990; Kunz et al., 2004) and induce the order in the water structure by increasing the
number of hydrogen bonds, which increases the viscosity of the solution (Zangi, 2009). This last effect could
be observed in the measurements of viscosity in brines (Table 1). Further, surface tension in both brines (80–
86 mN/m) was high compared to values recorded from seawater (72.93 mN/m; Matubayasi et al., 2001).

The reduction in water availability in hypersaline environments represents a fundamental stress for cellular sys-
tems (Hallsworth et al., 2003). The lowest aw value for growth recorded to date is 0.4 (Steinle et al., 2018). In this
study, we observed that natural brine displayed values of aw of 0.74. However, it was not possible to estimate
this parameter from concentrated brine, due to the high concentration of salts (>500 g/L), a value 14 times
higher than the mean salt concentration in contemporary oceans (35 g/L; Gargaud, 2011). In any given envir-
onment, salinity depends on several factors including the rate of evaporation (more evaporation resulting in
an increase in salt concentration) and precipitation (more precipitation resulting in a decrease in salt concentra-
tion; Mahajan & Tuteja, 2005). The salinity values obtained in this study was compared with the most hypersa-
line lakes in the world (Table S2; Arabbeigi et al., 2014; Berube et al., 2007; Bratina et al., 1998; Brock, 1979; Craig,
1969; Dickson et al., 2013; Eder et al., 2001; Haynes & Hammer, 1978; Herbst, 1998; Jiang et al., 2006; Larsen,
1980; Quiroz et al., 2015; Rawson & Moore, 1944; Risacher & Fritz, 1991; Stivaletta et al., 2011). This revealed that
natural brine from Salar de Atacama can be considered one of the world’s most hypersaline natural environ-
ments (dominated by NaCl), in addition to Wadi Natrun Lakes (Zugm, Rizunia; Imhoff et al., 1979) and Lake
Assal (Brisou et al., 1974). The concentrated lithium brines of the Salar de Atacama represent one of the most
saline environments described to date (dominated by LiCl), followed by the Discovery brine, dominated by
MgCl2 (Yakimov et al., 2015). Furthermore, it has been reported that the lithium chloride shows a very high solu-
bility (820 g/L at 20 °C) (Thies et al., 2002), explaining the extremely high salinities attained in these brines.

An extensive literature exists describing the presence of various taxa living in extremely saline conditions
(e.g., Brisou et al., 1974; Imhoff et al., 1979; Pedrós-Alió, 2004; Trüper & Galinski, 1986; Ventosa et al., 1998);
however, salinity in these studies typically reflects sodium salts. NaCl-dominated salterns have been
reported to be dominated by Euryarchaeota (Kambourova et al., 2016; Maturrano et al., 2006) and
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Gammaproteobacteria (Maturrano et al., 2006; Yeon et al., 2005), and to show high archaeal diversity (Andrei
et al., 2012; Kambourova et al., 2016), similar to our results, where Euryarchaeota dominate the natural brine.
Nevertheless, this does not occur in brines with other chemical compositions. For brines rich in CaCO3, micro-
bial diversity is typically dominated by Deltaproteobacteria and Alphaproteobacteria (Foti et al., 2008). In the
case of a deep-sea brine lake in the Mediterranean Sea rich in MgCl2, the environment was dominated by
Bacteria from the Gammaproteobacteria, Deltaproteobacteria, and Epsilonproteobacteria over Archaea
(van der Wielen et al., 2005). In addition, a recent research has detected the presence of the first haloalkali-
philic members of the Candidate Phyla Radiation in soda lake sediments (Na2CO3), as well as the dominance
of Firmicutes, Bacteroidetes, and Gammaproteobacteria over Archaea (Vavourakis et al., 2018).

It is likely that the relative composition of salts is not the only selective influence on microbial diversity in
hypersaline environments but that physical state and water availability (e.g., brine or rock) also play impor-
tant roles. In the case of the halite-rocks found in the Salar de Atacama, their saline composition (almost
entirely NaCl) is similar to the natural brine studied here. However, their microbial composition is character-
istically salt adapted, for example, Cyanobacteria sp., Salinibacter sp., Halococcus sp., and Halorhabdus sp.
(Robinson et al., 2015) and is notably different from the high archaeal diversity seen in the natural brine.

Before this study, little was known regarding the microbiota associated with lithium evaporation ponds in
Salar de Atacama. One report suggested that extremely saline (40% and 70% salinity) brines from the Salar
de Atacama were devoid of life (Pedrós-Alió, 2004), and another report showed the presence of Archaea
but not bacteria in this type of ponds (Demergasso et al., 2004). Recently, Haferburg et al. (2017) examined
the microbial diversity in naturally lithium-rich brines from Salar de Uyuni, Bolivia (salinity ≤356 g/L), only
reporting the presence of Archaea in its brines. These microbial groups were also found in our study, but
we report the presence of both domains Bacteria and Archaea (Figures 4 and S3), in hypersaline lithium
brines of Salar de Atacama (salinity = 556 g/L). The different results regarding the presence of bacteria likely
reflect methodological differences, given that the results of high-throughput sequencing depend strongly on
primer choice (Klinworth et al., 2013).

The high relative abundance of Salinibacter sp. (56%) found in the natural brine (dominated by NaCl) have
been widely described, since it is a typical bacterium reported in hypersaline environments (Antón et al.,
2000; del Mora-Ruiz et al., 2017; Maturrano et al., 2006). The principal families detected in the
concentrated brines were Staphylococcaceae (99.9%) and Xanthomonadaceae-unclassified (99.9%). Some
Staphylococcaceae have been reported as displaying halotolerance (Daoud et al., 2013). Furthermore,
Staphylococcus spp. have been isolated from a hypersaline lake and solar salterns that have NaCl as a principal
salt (Brisou et al., 1974; Ghozlan et al., 2006). However, to our understanding, the presence of Staphylococcus
sp. in lithium hypersaline environments, as well as its halophilic capacity, has not been reported so far.
Another striking result was the elevated number of unclassified reads from the family Xanthomonadaceae,
as these groups are not typical groups in environments with an extremely high salt concentration, conversely
the Xanthomonas strains has been isolated of contaminated soil and waste water (Chang & Zylstra, 2010).

The process of brine concentration via evaporation and subsequent harvesting of salts resulted in a change in
the saline composition of the natural brine (high sodium/low lithium concentration) to a brine concentrated
in lithium (low sodium/high lithium concentration). In addition, this change resulted in a marked shift in
microbial diversity in initial/final brines of the process, with Archaea as the most phylogenetically diverse
in natural brine, and Bacteria as the most phylogenetically diverse in concentrated lithium brine
(Figures 4a and 4b). However, Archaea was the only group shared in both (Figure S4). We postulate that
the factor driving tolerance to changes in salt composition and concentration in thesemicroorganisms is their
external structure. Halophilic Archaea such as Halobacterium salinarum have a surface layer (S layer), com-
posed of single protein or glycoprotein species (Albers & Meyer, 2011). These cellular structures include large
amounts of negatively charged amino acids including aspartate and glutamate (Bullock, 2000). When halo-
philes are present in saline environments such as brines, sodium ions neutralize the negative charges of
the carboxyl groups, avoiding cell lysis (Trachtenberg et al., 2000). This could explain how natural brine has
a higher richness in Archaea; however, this can be affected when the sodium concentrations decrease in
the evaporation ponds, resulting in a decrease of Archaea and a subsequent proportional increase in Bacteria.

In evaporation pond brines, lithium can be considered as a stressing agent acting on microbial diversity
selecting against lithium-intolerant microorganisms. This could explain the absence of extremely halophilic
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bacteria such as Salinibacter sp. and Halomonas sp. (Haferburg et al., 2017) from concentrated brine.
Staphylococcus sp., Xanthomonas sp., and Archaea present in the concentrated brine would likely developed
new strategies to survive at high lithium concentrations. In the case of Bacteria, a lithium tolerant isolate clas-
sified as Rhodococcus sp. (Urbano et al., 2013) showed the overexpression of enzymes, such as degrader-
Protease of misfolded or damaged proteins and proteins related a transcription and translation process, as
response of osmotic stress (Belfiore et al., 2017). In parallel, intracellular accumulation of compatible solutes
could be a key to survival, reflecting osmotic stress of sodium salt not only in halophiles (Oren, 2010) but also
in the case of lithium. Halotolerant and halophilic aerobic bacteria utilize an osmoadaptation “salt-out” strat-
egy, or the accumulation of osmotic solutes to avoid salt stress (Oren et al., 2002). Nevertheless, it has been
reported that Salinibacter ruber display a “salt-in” osmoadaptation strategy (similar to the order
Halobacteriales; Archaea). In growth conditions, when the concentration of NaCl is greater than 200 g/L,
these bacterial cells accumulate high K+ and Cl� intracellular concentrations (Oren et al., 2002). This could
explain the high abundance of Salinibacter in natural brines (where the concentration and ratio of Na+/Cl�

are high and similar, respectively) and the absence of this genus in concentrated brines, where sodium con-
centrations decrease and chloride concentrations drastically increase. Furthermore, the salt-in strategy can
be considered as an inflexible and very specific methods of osmoadaptation (Welsh, 2000), as all intracellular
process must be functional at high NaCl concentrations; therefore, the change in chemical composition of
brines (thought evaporation process) could also act as a selective force on the microbial community. The pre-
sence of proteins spots for glutamine synthetase, glycerol-3-phosphate dehydrogenase (GDPH), and glycine
dehydrogenase in Rhodoccoccus sp., grown in lithium, could reveal information about lithium-resistance stra-
tegies, through of accumulation and synthesis of glutamine, glycerol and glycine, as compatible solute and
chemical-chaperones for the correct folding of proteins (Belfiore et al., 2017; Diamant et al., 2001). Another
possible strategy to survive in high lithium concentrations could be extracellular accumulation of lithium.
This is supported by a previous study, which showed that Gram-positive bacteria are able to accumulate
the highest concentrations of lithium, unlike gram-negative bacteria, fungi or yeasts, due to the presence
of teichoic acids in their cell walls (Tsuruta, 2005). This accumulation of lithium by bacteria could be consid-
ered as a mechanism of lithium tolerance, as previously described for other metals (Lemire et al., 2013).
However, to date, it has not reported a possible survival strategy to lithium in Archaea.

Microbial life found in contemporary extreme ecosystems can provide information about how early life
evolved due to similarities with past environmental conditions (Gutiérrez-Preciado et al., 2018). For example,
microbial mats located in the Atacama Desert have been considered as an analogue of major Precambrian
environments (Gutiérrez-Preciado et al., 2018). Further, considering the dominant ions in this study (Cl�,
Li+, and Na+) and the level of deliquescence of salts and water activity present in the saline systems
(Davila et al., 2010), we suggest that each extreme saline environments represent a specific pattern of micro-
bial life that can provide evidence regarding the ecology and geology of ancient ecosystems. Although extre-
mely complicated, attempts to obtain ancient microbial life will likely provide important additional
information about survival and adaptative mechanisms, for example, related to ionic composition of natural
environments as Antarctic saline lakes (Matsubaya et al., 1979).

The salares (closed saline basins) of northern Chile are under continued threat, largely associated with water
extraction to support mining, or the direct exploitation of their salts (Li and B). Salt extraction is in the early
stages of development and will increase greatly in the near future to support the demands of commercial and
domestic industrial development, especially those related with lithium-ion batteries for electric cars.

It is important to highlight that microbial life—representing the main organisms present in these extreme
environments—requires protection within a framework of conservation. Our results clearly demonstrate
the uniqueness of Salar de Atacama as an unusual and distinctive habitat for microorganisms. The unique fea-
tures of these environments are important regarding not only the understanding of the microorganisms
inhabiting high LiCl concentrations but also extend to other areas, including astrobiology. For instance, the
presence of hydrated (hygroscopic) salts such as magnesium sulfate (Crisler et al., 2012), perchlorates of
sodium, and calcium in Martian soils (Ojha et al., 2015) might be key to the development of life.

In recent decades, the Atacama Desert has been subject to an increased focus for astrobiological research,
largely due to the presence of “Mars-like” soils (Bull et al., 2016; Navarro-González et al., 2003). These soils har-
bor active halophilic microbial communities (Ojha et al., 2015; Oren, 2013), specifically in areas with high
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concentrations of NaCl, such as halite rocks (Robinson et al., 2015). The presence of abundant deposits of
magnesium and sodium salts (major cations), as well as of sulfates and chlorides (major anions) on Mars
(Clark & van Hart, 1981; Forte et al., 2016); and the abundant presence of lithium in meteorites (Shima &
Honda, 1963) and stars including the Sun (Grevesse, 1968), potentially present important chemical similarities
with the brines studied in this research.

Our results showing notably higher bacterial diversity in concentrated brines relative to natural brines, com-
bined with the deliquesce effects of chloride in dry environments (like the Atacama Desert) in supporting an
active microbial community in Halite (where at a specific relative humidity the crust is transformed to brines;
Davila et al., 2010), have implications for potential life on Mars. It is not too difficult to believe that in deep
brines (Orosei et al., 2018) and the chloride-rich deposits of Terra Sirenum (Glotch et al., 2010) of Mars could
represent suitable habitat for extant or extinct Bacteria (similar than the concentrated lithium brines). If pre-
sent, Martian-microbial life probably display a salt-out osmoadaptation strategy, allowing flexibility for varia-
tion in ionic composition and water availability.

Consequently, we propose that the brines of Salar de Atacama could represent a useful future model for stu-
dies examining biological resistance mechanisms under life-limiting conditions, as well as possible biological
indicators for the search and probable development of extraterrestrial life.
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